Quantitation of MicroRNAs by Real-Time RT-qPCR

MicroRNAs (miRNAs) are ∼22 nucleotide regulatory RNA molecules that play important roles in controlling developmental and physiological processes in animals and plants. Measuring the level of miRNA expression is a critical step in methods that study the regulation of biological functions and that use miRNA profiles as diagnostic markers for cancer and other diseases. Even though the quantitation of these small miRNA molecules by RT-qPCR is challenging because of their short length and sequence similarity, a number of quantitative RT-qPCR-based miRNA quantitation methods have been introduced since 2004. The most commonly used methods are stem-loop reverse transcription (RT)-based TaqMan ® MicroRNA assays and arrays. The high sensitivity and specificity, large dynamic range, and simple work flow of TaqMan ® MicroRNA assays and arrays have made TaqMan analysis the method of choice for miRNA expression profiling and follow-up validation. Other methods such as poly (A) tailing-based and direct RT-based SYBR miRNA assays are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 85.59 Price includes VAT (France)

Softcover Book EUR 152.96 Price includes VAT (France)

Hardcover Book EUR 105.49 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

miRNA Quantification Method Using Quantitative Polymerase Chain Reaction in Conjunction with C q Method

Chapter © 2018

RT-qPCR-Based Quantification of Small Non-Coding RNAs

Chapter © 2015

Quantification of miRNAs by a Simple and Specific qPCR Method

Chapter © 2014

References

  1. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–54. ArticlePubMedCASGoogle Scholar
  2. Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–62. ArticlePubMedCASGoogle Scholar
  3. Ruvkun, G. (2001) Molecular biology. Glimpses of a tiny RNA world. Science294, 797–9. ArticlePubMedCASGoogle Scholar
  4. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–97. ArticlePubMedCASGoogle Scholar
  5. Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res36, D154–8. ArticlePubMedCASGoogle Scholar
  6. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science294, 853–8. ArticlePubMedCASGoogle Scholar
  7. Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–62. ArticlePubMedCASGoogle Scholar
  8. Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science309, 1573–6. ArticlePubMedCASGoogle Scholar
  9. Orom, U.A., Nielsen, F.C., and Lund, A.H. (2008) MicroRNA-10a binds the 5′-UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30, 460–71. ArticlePubMedGoogle Scholar
  10. Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20. ArticlePubMedCASGoogle Scholar
  11. Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005) Principles of microRNA/target recognition. PLoS Biol3, e85. ArticlePubMedGoogle Scholar
  12. Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M. (2005) Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals. Nature434, 338–45. ArticlePubMedCASGoogle Scholar
  13. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–73. ArticlePubMedCASGoogle Scholar
  14. Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science312, 75–9. ArticlePubMedCASGoogle Scholar
  15. Makeyev, E.V. and Maniatis, T. (2008) Multilevel regulation of gene expression by microRNAs. Science319, 1789–90. ArticlePubMedCASGoogle Scholar
  16. Zhao, Y. and Srivastava, D. (2007) A developmental view of microRNA function. Trends Biochem Sci32, 189–97. ArticlePubMedCASGoogle Scholar
  17. Visvanathan, J., Lee, S., Lee, B., Lee, J.W., and Lee, S.K. (2007) The microRNA miR-124 antagonizes the . pathway during embryonic CNS development. Genes Dev21, 744–9. ArticlePubMedCASGoogle Scholar
  18. Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA103, 2422–7. ArticlePubMedCASGoogle Scholar
  19. Makeyev, E.V., Zhang, J., Carrasco, M.A., and Maniatis, T. (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell27, 435–48. ArticlePubMedCASGoogle Scholar
  20. Boutz, P.L., Chawla, G., Stoilov, P., and Black, D.L. (2007) MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev21, 71–84. ArticlePubMedCASGoogle Scholar
  21. Edwards, R.H., Marquitz, A.R., and Raab-Traub, N. (2008) Epstein-Barr virus BART miRNAs are produced from a large intron prior to splicing. J Virol82, 9094–106. ArticlePubMedCASGoogle Scholar
  22. Zhang, R., Wang, Y.Q., and Su, B. (2008) Molecular evolution of a primate-specific microRNA family. Mol Biol Evol25, 1493–502. ArticlePubMedCASGoogle Scholar
  23. Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., Tuschl, T., and Margalit, H. (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res33, 2697–706. ArticlePubMedCASGoogle Scholar
  24. Gaur, A., Jewell, D.A., Liang, Y., Ridzon, D., Moore, J.H., Chen, C., Ambros, V.R., and Israel, M.A. (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res67, 2456–68. ArticlePubMedCASGoogle Scholar
  25. Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell129, 1401–14. ArticlePubMedCASGoogle Scholar
  26. Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., Benjamin, H., Shabes, N., Tabak, S., Levy, A., et al. (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol26, 462–9. ArticlePubMedCASGoogle Scholar
  27. Chen, C., Ridzon, D., Lee, C.T., Blake, J., Sun, Y., and Strauss, W.M. (2007) Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm Genome18, 316–27. ArticlePubMedCASGoogle Scholar
  28. Xi, Y., Nakajima, G., Gavin, E., Morris, C.G., Kudo, K., Hayashi, K., and Ju, J. (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA13, 1668–74. ArticlePubMedCASGoogle Scholar
  29. Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA105, 10513–18. ArticlePubMedCASGoogle Scholar
  30. Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res33, e179. ArticlePubMedGoogle Scholar
  31. Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., et al. (2008) Serum microRNAs are promising novel biomarkers. PLoS One3, e3148. ArticlePubMedGoogle Scholar
  32. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005) MicroRNA expression profiles classify human cancers. Nature435, 834–8. ArticlePubMedCASGoogle Scholar
  33. Calin, G.A., Liu, C.G., Sevignani, C., Ferracin, M., Felli, N., Dumitru, C.D., Shimizu, M., Cimmino, A., Zupo, S., Dono, M., et al. (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA101, 11755–60. ArticlePubMedCASGoogle Scholar
  34. Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA9, 1274–81. ArticlePubMedCASGoogle Scholar
  35. Nelson, P.T., Baldwin, D.A., Scearce, L.M., Oberholtzer, J.C., Tobias, J.W., and Mourelatos, Z. (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods1, 155–61. ArticlePubMedCASGoogle Scholar
  36. Sarkar, D., Parkin, R., Wyman, S., Bendoraite, A., Sather, C., Delrow, J., Godwin, A.K., Drescher, C., Huber, W., Gentleman, R., et al. (2008) Quality assessment and data analysis for microRNA expression arrays. Nucleic Acids Res37, e17. ArticlePubMedGoogle Scholar
  37. Raymond, C.K., Roberts, B.S., Garrett-Engele, P., Lim, L.P., and Johnson, J.M. (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA11, 1737–44. ArticlePubMedCASGoogle Scholar
  38. Shi, R. and Chiang, V.L. (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques39, 519–25. ArticlePubMedCASGoogle Scholar
  39. Sharbati-Tehrani, S., Kutz-Lohroff, B., Bergbauer, R., Scholven, J., and Einspanier, R. (2008) miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol9, 34. ArticlePubMedGoogle Scholar
  40. Chen, J., Lozach, J., Garcia, E.W., Barnes, B., Luo, S., Mikoulitch, I., Zhou, L., Schroth, G., and Fan, J.B. (2008) Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res36, e87. ArticlePubMedGoogle Scholar
  41. Allawi, H.T., Dahlberg, J.E., Olson, S., Lund, E., Olson, M., Ma, W.-P., Takova, T., Neri, B.P., and Lyamichev, V.I. (2004) Quantitation of microRNAs using a modified Invader assay. RNA10, 1153–61. ArticlePubMedCASGoogle Scholar
  42. Jonstrup, S.P., Koch, J., and Kjems, J. (2006) A microRNA detection system based on padlock probes and rolling circle amplification. RNA12, 1747–52. ArticlePubMedCASGoogle Scholar
  43. Schmittgen, T.D., Lee, E.J., Jiang, J., Sarkar, A., Yang, L., Elton, T.S., and Chen, C. (2008) Real-time PCR quantification of precursor and mature microRNA. Methods44, 31–8. ArticlePubMedCASGoogle Scholar
  44. Mestdagh, P., Feys, T., Bernard, N., Guenther, S., Chen, C., Speleman, F., and Vandesompele, J. (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA.Nucleic Acids Res36, e143. ArticlePubMedGoogle Scholar
  45. de Kok, J.B., Roelofs, R.W., Giesendorf, B.A., Pennings, J.L., Waas, E.T., Feuth, T., Swinkels, D.W., and Span, P.N. (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest85, 154–9. PubMedGoogle Scholar
  46. Suzuki, T., Higgins, P.J., and Crawford, D.R. (2000) Control selection for RNA quantitation. Biotechniques29, 332–7. PubMedCASGoogle Scholar
  47. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol3, RESEARCH0034. ArticlePubMedGoogle Scholar
  48. Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA95, 14863–8. ArticlePubMedCASGoogle Scholar
  49. Andersen, C.L., Jensen, J.L., and Orntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res64, 5245–50. ArticlePubMedCASGoogle Scholar

Acknowledgments

The authors would like to thank Dr. Neil Straus for comments and feedback on the manuscript.