Quantitation of MicroRNAs by Real-Time RT-qPCR

MicroRNAs (miRNAs) are ∼22 nucleotide regulatory RNA molecules that play important roles in controlling developmental and physiological processes in animals and plants. Measuring the level of miRNA expression is a critical step in methods that study the regulation of biological functions and that use miRNA profiles as diagnostic markers for cancer and other diseases. Even though the quantitation of these small miRNA molecules by RT-qPCR is challenging because of their short length and sequence similarity, a number of quantitative RT-qPCR-based miRNA quantitation methods have been introduced since 2004. The most commonly used methods are stem-loop reverse transcription (RT)-based TaqMan ® MicroRNA assays and arrays. The high sensitivity and specificity, large dynamic range, and simple work flow of TaqMan ® MicroRNA assays and arrays have made TaqMan analysis the method of choice for miRNA expression profiling and follow-up validation. Other methods such as poly (A) tailing-based and direct RT-based SYBR miRNA assays are also discussed in this chapter.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 85.59 Price includes VAT (France)
Softcover Book EUR 152.96 Price includes VAT (France)
Hardcover Book EUR 105.49 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others

miRNA Quantification Method Using Quantitative Polymerase Chain Reaction in Conjunction with C q Method
Chapter © 2018

RT-qPCR-Based Quantification of Small Non-Coding RNAs
Chapter © 2015

Quantification of miRNAs by a Simple and Specific qPCR Method
Chapter © 2014
References
- Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–54. ArticlePubMedCASGoogle Scholar
- Wightman, B., Ha, I., and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–62. ArticlePubMedCASGoogle Scholar
- Ruvkun, G. (2001) Molecular biology. Glimpses of a tiny RNA world. Science294, 797–9. ArticlePubMedCASGoogle Scholar
- Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–97. ArticlePubMedCASGoogle Scholar
- Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res36, D154–8. ArticlePubMedCASGoogle Scholar
- Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science294, 853–8. ArticlePubMedCASGoogle Scholar
- Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science294, 858–62. ArticlePubMedCASGoogle Scholar
- Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science309, 1573–6. ArticlePubMedCASGoogle Scholar
- Orom, U.A., Nielsen, F.C., and Lund, A.H. (2008) MicroRNA-10a binds the 5′-UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30, 460–71. ArticlePubMedGoogle Scholar
- Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20. ArticlePubMedCASGoogle Scholar
- Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005) Principles of microRNA/target recognition. PLoS Biol3, e85. ArticlePubMedGoogle Scholar
- Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M. (2005) Systematic discovery of regulatory motifs in human promoters and 3′UTRs by comparison of several mammals. Nature434, 338–45. ArticlePubMedCASGoogle Scholar
- Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–73. ArticlePubMedCASGoogle Scholar
- Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science312, 75–9. ArticlePubMedCASGoogle Scholar
- Makeyev, E.V. and Maniatis, T. (2008) Multilevel regulation of gene expression by microRNAs. Science319, 1789–90. ArticlePubMedCASGoogle Scholar
- Zhao, Y. and Srivastava, D. (2007) A developmental view of microRNA function. Trends Biochem Sci32, 189–97. ArticlePubMedCASGoogle Scholar
- Visvanathan, J., Lee, S., Lee, B., Lee, J.W., and Lee, S.K. (2007) The microRNA miR-124 antagonizes the . pathway during embryonic CNS development. Genes Dev21, 744–9. ArticlePubMedCASGoogle Scholar
- Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA103, 2422–7. ArticlePubMedCASGoogle Scholar
- Makeyev, E.V., Zhang, J., Carrasco, M.A., and Maniatis, T. (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell27, 435–48. ArticlePubMedCASGoogle Scholar
- Boutz, P.L., Chawla, G., Stoilov, P., and Black, D.L. (2007) MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. Genes Dev21, 71–84. ArticlePubMedCASGoogle Scholar
- Edwards, R.H., Marquitz, A.R., and Raab-Traub, N. (2008) Epstein-Barr virus BART miRNAs are produced from a large intron prior to splicing. J Virol82, 9094–106. ArticlePubMedCASGoogle Scholar
- Zhang, R., Wang, Y.Q., and Su, B. (2008) Molecular evolution of a primate-specific microRNA family. Mol Biol Evol25, 1493–502. ArticlePubMedCASGoogle Scholar
- Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M.J., Tuschl, T., and Margalit, H. (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res33, 2697–706. ArticlePubMedCASGoogle Scholar
- Gaur, A., Jewell, D.A., Liang, Y., Ridzon, D., Moore, J.H., Chen, C., Ambros, V.R., and Israel, M.A. (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res67, 2456–68. ArticlePubMedCASGoogle Scholar
- Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M., et al. (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell129, 1401–14. ArticlePubMedCASGoogle Scholar
- Rosenfeld, N., Aharonov, R., Meiri, E., Rosenwald, S., Spector, Y., Zepeniuk, M., Benjamin, H., Shabes, N., Tabak, S., Levy, A., et al. (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol26, 462–9. ArticlePubMedCASGoogle Scholar
- Chen, C., Ridzon, D., Lee, C.T., Blake, J., Sun, Y., and Strauss, W.M. (2007) Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm Genome18, 316–27. ArticlePubMedCASGoogle Scholar
- Xi, Y., Nakajima, G., Gavin, E., Morris, C.G., Kudo, K., Hayashi, K., and Ju, J. (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA13, 1668–74. ArticlePubMedCASGoogle Scholar
- Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., Peterson, A., Noteboom, J., O’Briant, K.C., Allen, A., et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA105, 10513–18. ArticlePubMedCASGoogle Scholar
- Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res33, e179. ArticlePubMedGoogle Scholar
- Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., et al. (2008) Serum microRNAs are promising novel biomarkers. PLoS One3, e3148. ArticlePubMedGoogle Scholar
- Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005) MicroRNA expression profiles classify human cancers. Nature435, 834–8. ArticlePubMedCASGoogle Scholar
- Calin, G.A., Liu, C.G., Sevignani, C., Ferracin, M., Felli, N., Dumitru, C.D., Shimizu, M., Cimmino, A., Zupo, S., Dono, M., et al. (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA101, 11755–60. ArticlePubMedCASGoogle Scholar
- Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA9, 1274–81. ArticlePubMedCASGoogle Scholar
- Nelson, P.T., Baldwin, D.A., Scearce, L.M., Oberholtzer, J.C., Tobias, J.W., and Mourelatos, Z. (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods1, 155–61. ArticlePubMedCASGoogle Scholar
- Sarkar, D., Parkin, R., Wyman, S., Bendoraite, A., Sather, C., Delrow, J., Godwin, A.K., Drescher, C., Huber, W., Gentleman, R., et al. (2008) Quality assessment and data analysis for microRNA expression arrays. Nucleic Acids Res37, e17. ArticlePubMedGoogle Scholar
- Raymond, C.K., Roberts, B.S., Garrett-Engele, P., Lim, L.P., and Johnson, J.M. (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA11, 1737–44. ArticlePubMedCASGoogle Scholar
- Shi, R. and Chiang, V.L. (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques39, 519–25. ArticlePubMedCASGoogle Scholar
- Sharbati-Tehrani, S., Kutz-Lohroff, B., Bergbauer, R., Scholven, J., and Einspanier, R. (2008) miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol9, 34. ArticlePubMedGoogle Scholar
- Chen, J., Lozach, J., Garcia, E.W., Barnes, B., Luo, S., Mikoulitch, I., Zhou, L., Schroth, G., and Fan, J.B. (2008) Highly sensitive and specific microRNA expression profiling using BeadArray technology. Nucleic Acids Res36, e87. ArticlePubMedGoogle Scholar
- Allawi, H.T., Dahlberg, J.E., Olson, S., Lund, E., Olson, M., Ma, W.-P., Takova, T., Neri, B.P., and Lyamichev, V.I. (2004) Quantitation of microRNAs using a modified Invader assay. RNA10, 1153–61. ArticlePubMedCASGoogle Scholar
- Jonstrup, S.P., Koch, J., and Kjems, J. (2006) A microRNA detection system based on padlock probes and rolling circle amplification. RNA12, 1747–52. ArticlePubMedCASGoogle Scholar
- Schmittgen, T.D., Lee, E.J., Jiang, J., Sarkar, A., Yang, L., Elton, T.S., and Chen, C. (2008) Real-time PCR quantification of precursor and mature microRNA. Methods44, 31–8. ArticlePubMedCASGoogle Scholar
- Mestdagh, P., Feys, T., Bernard, N., Guenther, S., Chen, C., Speleman, F., and Vandesompele, J. (2008) High-throughput stem-loop RT-qPCR miRNA expression profiling using minute amounts of input RNA.Nucleic Acids Res36, e143. ArticlePubMedGoogle Scholar
- de Kok, J.B., Roelofs, R.W., Giesendorf, B.A., Pennings, J.L., Waas, E.T., Feuth, T., Swinkels, D.W., and Span, P.N. (2005) Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest85, 154–9. PubMedGoogle Scholar
- Suzuki, T., Higgins, P.J., and Crawford, D.R. (2000) Control selection for RNA quantitation. Biotechniques29, 332–7. PubMedCASGoogle Scholar
- Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol3, RESEARCH0034. ArticlePubMedGoogle Scholar
- Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA95, 14863–8. ArticlePubMedCASGoogle Scholar
- Andersen, C.L., Jensen, J.L., and Orntoft, T.F. (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res64, 5245–50. ArticlePubMedCASGoogle Scholar
Acknowledgments
The authors would like to thank Dr. Neil Straus for comments and feedback on the manuscript.